If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3(2v^2-4v+1)=0
We multiply parentheses
6v^2-12v+3=0
a = 6; b = -12; c = +3;
Δ = b2-4ac
Δ = -122-4·6·3
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-6\sqrt{2}}{2*6}=\frac{12-6\sqrt{2}}{12} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+6\sqrt{2}}{2*6}=\frac{12+6\sqrt{2}}{12} $
| 2(6x-7)=15x-9 | | 3-x-59=93 | | 6v^2=-3+12v | | 1=6x-5-3x | | 9.3+56x=261 | | 7.2*m=–10.8 | | 7.2m=–10.8 | | 3=16t^2+256t+1680 | | 104=4(5r+6) | | 3z÷10-5=5 | | -12x-10=40 | | x^2-6x-343=0 | | 8=4-5x+4 | | 15+4y=80 | | 40-48x=328 | | -3+-4x=29 | | 5(c+8)+c+3=1 | | -4r-5r=0 | | 5(c+8)+c=3 | | (4x)^2/3=64 | | 0.4x=15 | | u+21=7u+6 | | 0=-16t^2+150t+70 | | 3(s+22)=4(s+12 | | N^2=84-6n | | (10x6)(10x8)=10^10 | | 84=30+6w | | (7/5x)+(8/3x)=0 | | M^2+84=-8m | | 12=5x+5 | | -6-2b=6=12 | | x+1=1/2(4x) |